Page 1 of 21

Client Staffordshire Crystal Ltd. Unit 14 Pedmore Road Ind. Estate Brierley Hill West Midlands DY5 1TJ

Part 1: Executive Summary

Report for the Periodic Monitoring of Emissions to Air.

Site Plant Sampling Date Report Date Job Number Permit Number Brierley Hill Acid Fume Scrubber 28th January 2016 25th February 2016 71962p1r0 PB/98 Variation 200839393

Report Prepared by: Print

MCERTS No.

Michelle Edwards

MM05 659

Level 2 TE: 1,2,3,4

Report Approved by: Sign

Print MCERTS No.

Derek Myers MM02 115

Level 2 TE: 1,2,3,4

Exova (UK) Ltd Unit 19 Bordesley Green Trading Estate Bordesley Green Road Birmingham B8 1BZ

Tel: 0161 4323286 Company Registration No SC070429

Page 2 of 21

Contents

Page 1 Part 1: Executive Summary

- Page 2 Contents
- Page 3 Monitoring Objectives
- Page 3 Special Monitoring Requirements
- Page 4 Summary Of Methods
- Page 4 Summary Of Results
- Page 5 Operating Information
- Page 5 Comments On Monitoring Procedures

Page 6 Part 2: Supporting Information

Page 7 Appendix 1

- Page 8 Emission Monitoring Procedures and Instrumentation
- Page 9 Sampling Personnel
- Page 9 Equipment References
- Page 9 Subcontracted Analysis

Page 10 Appendix 2

- Page 11 Preliminary Velocity Traverse & Moisture Data
- Page 12 Hydrogen Fluoride Sampling Data
- Page 13 Hydrogen Fluoride Emission Results

Page 14 Appendix 3

- Page 15 Diagram of Sampling Location
- Page 16 Generic Calculations
- Page 17 Flow Calculations
- Page 18 Concentration Calculation
- Page 19 Uncertainty Estimate Calculations Manual Techniques

Page 20 Appendix 4

Page 21 Uncertainty Estimates:- Hydrogen Fluoride

Page 3 of 21

Monitoring Objectives

The monitoring was undertaken to check compliance with authorised emission limits.

All monitoring procedures were carried out to the MCERTS requirements under the Exova (UK) Ltd quality system to ISO 17025: 2005.

Monitoring was undertaken for the listed emissions from the following sampling positions:

Sampling Location	Emission
Acid Fume Scrubber	Hydrogen fluoride

Special Monitoring Requirements

There were no special requirements for this monitoring campaign.

Summary Of Methods

Emission	Method number	Method standard
Gas velocity and volume flow	TPM/01A	BS EN ISO 16911-1:2013
Water vapour	MM0010	BS EN 14790 : 2005
Hydrogen fluoride	MM0013	BS ISO 15713 : 2006

Summary Of Results

The table presents the atmospheric emissions from the tests undertaken on behalf of **Staffordshire Crystal Ltd.** The results were measured from the sample positions downstream of the arrestment plant.

Emission at	Sampling			Emission	Authorised	Uncertainty	Detection	Mass		
Brierley Hill	Time			Result	Limit	+/-	Limit	Emission		
Acid Fume Scrubber	Date Start End			mg/m ³ *	mg/m ³ *	mg/m ³ *	mg/m³∗	g/h		
s Hydrogen fluoride	28/01/16		28/01/16	6 09:57	10:37	11.4	5	1.7	0.10	51.79
* at reference conditions	Stack Gas Weight			0 °C		Without correction for moisture				

Where applicable

Oxides of nitrogen results are expressed as nitrogen dioxide TOC results are expressed as total carbon

101.3 kPa

Oxygen

Throughout Report:

Reference conditions (see above)

Kg/kmol

** Analysis not required

29.00

- ND Non detectable
- s Subcontracted laboratory analysis

Nm³ 273 K, 101.3 kPa # - UKAS accredited only ## - Not Accredited N/A Not applicable

No Correction

%

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor k=2, providing a 95% confidence level. The uncertainty evaluation has been carried out in accordance with UKAS requirements.

All tests included in this report are accredited under UKAS and MCERTS accreditation schemes unless otherwise stated. Opinions and interpretations expressed herein are outside the scope of MCERTS and UKAS accreditation.

1783

Page 5 of 21

Operating Information

The table below shows details of the operating information on each sampling date for: Acid Fume Scrubber

Date	Process type	Process duration	Fuel	Feedstock	Abatement	Load
28/01/2016	Acid Fume Scrubber	Continuous	-	Glass	Wet Scrubber	Normal Operation

No CEMs installed on the emission point.

Comments & Monitoring Deviations

A waste gas homogeneity test to BS EN 15259:2007 (MID) is not required: The homogeneity test is not applicable to non-combustion processes. The homogeneity test is not applicable to duct areas less than $1m^2$.

All monitoring was performed in accordance with the relevant procedures.

The sampling location is a vertical duct.

The velocity and temperature profile at the sampling location met the requirements of BS EN 13284-1: 2002.

The impinger efficiency check for hydrogen fluoride was performed and meet the required of >95%.

When the results are expressed as non-detected the mass emissions are calculated from the detection limit and therefore they are worst case results.

Page 6 of 21

Part 2: Supporting Information

Report for the Periodic Monitoring of Emissions to Air.

Client	Staffordshire Crystal Ltd.
Site	Brierley Hill
Plant	Acid Fume Scrubber
Sampling Date	28th January 2016
Report Date	25th February 2016
Job Number	71962p1r0
Permit Number	PB/98 Variation 200839393

Report Prepared by:	Print	Michelle Edwards	
	MCERTS No.	MM05 659	Level 2 TE: 1,2,3,4
Report Approved by:	Sign	D. h. Myers	
	Print	Derek Myers	
	MCERTS No.	MM02 115	Level 2 TE: 1,2,3,4

Exova (UK) Ltd

Unit 19 Bordesley Green Trading Estate Bordesley Green Road Birmingham B8 1BZ

Tel: 0161 4323286 Company Registration No SC070429

Page 7 of 21

APPENDIX 1

Page 8 of 21

Emission Monitoring Procedures And Instrumentation

Gas velocity and temperature

Documented in-house procedure TPM01/A to the main procedural requirements of BS EN ISO 16911-1:2013 Velocity and temperature measurements are performed using a calibrated Pitot tube, a calibrated pressure differential reading device and a calibrated thermocouple. Velocity and possible flow deviation measurements are carried out at selected, representative points in the gas stream.

Water vapour

Documented in-house procedure MM0010 to the main procedural requirements of BS EN 14790:2005. A measured volume of gas is extracted from the gas stream through a moisture trapping unit. The mass gain of moisture trapped is divided by the volume of gas sampled to determine the mass concentration of water vapour. For water saturated stacks the temperature of the gas stream is measured and the water vapour concentration is determined using liquid-gas equilibrium tables. Sampling points are selected in accordance with the findings of any BS EN 15259 assessment.

Hydrogen fluoride

Documented in-house procedure MM0013 to the main procedural requirements of BS ISO 15713:2006 A substantial metered volume of gas is extracted through a dedicated heated probe, filter, sample line and chilled multi-impinger train containing sodium hydroxide solution, and subsequent Ion Chromatography analysis. Sampling points are selected in accordance with the findings of any BS EN 15259 assessment.

Page 9 of 21

Sampling Project Personnel Competency And Expiry Dates

Report prepared by:	Michelle Edwards	MCERTS No MM05 659	Level 1 -	Level 2 30/06/2017	TE1 31/12/2017	TE2 31/12/2019	TE3 30/06/2018	TE4 29/02/2020
Report authorised by:	Derek Myers	MM02 115	-	30/09/2017	31/05/2018	30/11/2018	30/11/2018	30/11/2018
Team leader:	Michelle Edwards	MM05 659	-	30/06/2017	31/12/2017	31/12/2019	30/06/2018	29/02/2020
Team leader:	Aidan Wrynne	MM08 921	-	31/05/2017	31/05/2017	31/11/2018	30/11/2017	30/06/2018

Equipment References

Equipment	Reference Number			
Probe	10			
Stack Thermocouple	AQ184			
Timer / Stopwatch	AQ308			
Barometer	AQ343			
Pitot	AQ296			
Callipers	CV24			
Tape Measure	AQ278			
Impinger Thermocouple	TV34			
Sample Rate Calculation Equipment	Laptop			
Thermometer	AQ126			
Manometer	AQ126			
Balance	AQ090			
Weights	AQ090a & AQ090b			

Subcontracted Analysis

Exova (UK) Ltd has, with your approval, used the following sub-contracted laboratories for the laboratory analyses referenced below:

Laboratory:	Exova (UK) Ltd
Parameters:	Acid Gases - Internal method, IC
Accreditation:	UKAS Accredited testing laboratory number 4279

Page 10 of 21

APPENDIX 2

Page 11 of 21

				_
Date	28/01/2016	Barometric pressure	100.5	ŀ
Time	09:00	Duct static pressure	0.01	ŀ
Pitot Cp	0.84	Stack Area	0.181	ŀ

Stack Diameter (circular)	0.48	m

Traverse	Traverse	Depth	ΔP	Т	Angle	velocity	Traverse	Depth	ΔP	Т	Angle	velocity
Point	Line	cm	mmH ₂ O	°C	0	m/s	Line	cm	mmH₂O	°C	0	m/s
1	А						В					
2	А	5.0	7.4	12	<15	9.1	В					
3	А	5.7	7.0	12	<15	8.9	В					
4	А	8.5	5.4	12	<15	7.8	В					
5	А	12.0	5.2	12	<15	7.7	В					
6	А	17.1	4.8	12	<15	7.4	В					
7	А	30.9	4.6	12	<15	7.2	В					
8	А	36.0	4.4	12	<15	7.0	В					
9	А	39.5	4.2	12	<15	6.9	В					
10	А	42.3	4.0	12	<15	6.7	В					
11	A	43.0	3.8	12	<15	6.5	В					
12	А						В					

Average Pitot DP	5.02	mmH₂O
Average Temperature	285.2	к
Average Velocity	7.5	m/s
Average volumetric flow rate	1.36	m ³ /s at stack conditions
Average volumetric flow rate	1.29	m³/s (wet STP)
Average volumetric flow rate	1.25	m³/s (dry STP)
Average volumetric flow rate	N/A	m ³ /s (dry, STP, reference oxygen concentration)

Sampling plane requirements Re: BS EN 13284-1:2001 5.2

а	Angel of gas flow less than 15° with regard to duct axis			
b	No local negative flow		YES	
С	Minimum pitot greater than 5Pa		YES	
d	Ratio of highest to lowest local gas velocity less than 3:1		YES	
	Minimum local gas velocity 6.5			
	Maximum local gas velocity 9.1			
	Ratio of highest to lowest local gas velocity	1.40		

Moisture Determination BS EN 14790:2005

	Volume	Temp	Pressure
	m³	°C	mbar
Meter start	2967.840	8	1005
Meter end	2967.995	8	1005
Meter Yd	0.974		
Gas volume	0.146		

Impinger	1	2	3	4
Mass start (g)	745.4	686.6	581.9	806.4
Mass End (g)	745.6	686.6	582.8	809.4
Total Mass collected (g)		4.1		

3.4

Water vapour content (% v/v)

If water droplets are present in the gas, the water vapour content is calculated using BS EN 14790 Annex A

N/A % v/v

Page 12 of 21

Probe/Pitot ID No		10/AQ296
Pitot Calibration Factor (Cp)		0.84
Gas Calibration Factor (Y)		0.974
Barometric Pressure	kPa	100.5
Duct static Pressure	kPa	0.01
Date		28/01/2016
Start Time	hh:min	09:57
End Time	hh:min	10:37
Sampling Duration	hh:min	00:40

In-stack Filtration
Leak check OK
Meter ID No
Initial Gas Meter Reading
Final Gas Meter Reading
Sampled Vol, Dry at Meter
Sampled Vol, Dry STP
Moisture content of stack gas

Y/N	Ν
Y/N	Y
	AQ126
m³	2967.840
m³	2967.995
m³	0.155
Nm ³	0.146
% v/v	3.4

Impinger	1	2	3	4
Initial mass (g)	745.4	686.6	581.9	806.4
Final mass (g)	745.6	686.6	582.8	809.4

				Temperatures			
Sample	Line	Sampling	Pitot Reading	Sample Gas	Filter	Meter	Orifice
Point		Time		Temperature	Temperature	Temperature	Pressure
Number			(h)	(Ts)		(Tm)	(Dh)
		hh:min	mm w.g	C	C	°C	mm w.g
Centre	Point	09:57	4.8	13	150	8	10.0
		10:02	4.8	13	150	8	10.0
		10:07	4.8	13	150	8	10.0
		10:12	4.8	13	150	8	10.0
		10:17	4.8	13	150	8	10.0
		10:22	4.8	13	150	8	10.0
		10:27	4.8	13	150	8	10.0
		10:32	4.8	13	150	8	10.0
	End	10:37					
		Averages	48	13.0	150.0	8.0	10.0
		, worages	7.0	10.0	100.0	0.0	10.0

verage velocity	7.36	m/s
verage flow rate	1.33	m³/s
verage flow rate	1.26	m³/s*

Hydrogen Fluoride - Sampling Data

Page	13	of	21
------	----	----	----

Date	28/01/2016
Start time	09:57
Finish time	10:37

	UNITS	Impinger 1	Impinger 2	Impinger 3	Impinger 4
				(Drop Out)	(Silica Gel)
Start mass	g	745.4	686.6	581.9	806.4
Finish mass	g	745.6	686.6	582.8	809.4
Impingers 1 & wash mass	g	165			
Impingers 2,3 & wash mass	g	127			
Field blank mass	g	216			
Sample gas volume	Nm ³	0.146			

		Impinger 1	Impinger 2&3	Field Blank
Acid Gases	UNITS	& wash conc.	& wash conc.	conc.
		71962/23	71962/24	71962/21
Hydrogen fluoride	mg/l	10.33	0.11	0.05

		Impinger 1	Impinger 2	Detection	Field Blank	Total	Impinger
		Emission	Emission	Limit	Emission	Emission	Efficiency %
Hydrogen fluoride	mg/m³*	11.31	0.09	0.10	0.07	11.40	99.19

Numbers in bold indicate detection limits

Laboratory	Exova Catalyst UK		
Method N° & Accreditation Status	IC (Acetate Separation)	UKAS	
Date of analysis	03/02/2016		

Hydrogen Fluoride - Emission Results

Page 14 of 21

APPENDIX 3

Page 15 of 21

Diagram Of The Sampling Location

Diagram of sampling points across the cross section of the duct (not to scale).

Traverse length =	0.48 m
-------------------	--------

Point	% of D	Location
		CIII

Page 16 of 21

General Calculations

Stack area:

Area of a circle =
$$\frac{\pi . D^2}{4}$$

D = Diameter (m) $\pi = 3.142$

Pressure conversion:

1mmH2O = 0.00980665 kPa 1mmH2O = 9.80665 Pa 1 mar = 0.1 kPa

Water vapour concentration:

From reference calculations (taken from BS EN 14790):

$$V_{WC(\%)} = \frac{\frac{M_{WC} \cdot V_{mol(std)}}{M_{W}}}{\frac{m_{WC} \cdot V_{mol(std)}}{M_{W}} + V_{m(std)}} \times 100$$

VWC (%) =Water vapour content on wet basis, in volume % (m³ of water vapour in m³ of wet gas)Vm(std) =Dry gas volume measured, corrected to standard conditions (m³)mWC =Mass of water collected in the impingers (g)Mw =Molecular weight of water, 18.01534 rounded to 18 (g/mol)Vmol(std) =Molar volume of water at standard conditions = 0.0224 (m3/mol)

Gas meter volume at standard conditions (STP)

From reference calculations (taken from BS EN 14790):

$$V_{m(std)} = y_d \times (V_2 - V_1) \times \frac{T_{std}}{T_m} \times \frac{p_m}{p_{std}}$$

Vm(std) =	Dry gas meter volume at standard conditions (m ³)
yd =	Gas meter calibration coefficient
(V2-V1) =	Dry gas meter volume at actual conditions (m ³)
Tm =	Actual Temperature (K)
Tstd =	Standard temperature (273 K)
pm =	Absolute pressure at the gas meter (kPa)
pstd =	Standard gas pressure (101.3 kPa)

Isokenetic Ratio (%):

From reference calculations (taken from EA TGN M2):

IsokineticRatio(%) =
$$\frac{Velocity at the sampling nozzle}{Velocity of the stack gas} \times 100$$

Estimating Measurment Uncertainty

Uncertainty estimates are calculated using the general rule of uncertainty propagation. Guidance is taken from publications including UKAS document M3003 and ISO 20988:2007.

Page 17 of 21

Flow Calculations

Velocity:

From reference calculations (taken from ISO 10780):

$$\overline{v} = KC \sqrt{\frac{T_s \,\Delta \overline{p}}{p_e \,M_s}}$$

Average velocity (m/s)

 С velocity calculation constant = 129

Ts = Average stack temperature (K)

Ms = Molar mass of gas; assume 29 kg/kmol unless the molar mass is < 27 kg/kmol or > 31 g/kmol

K= Pitot calibration coefficient

Pe = Absolute gas pressure (kPa)

 $\Delta \overline{p} = Average pitot tube pressure differencial (kPa)$

Volume flow rate

From reference calculations (taken from ISO 10780):

$$q_{va} = vA$$

qva = Average flow rate (m³/s) \overline{v} = Average velocity (m/s) A = Stack cross-sectional area (m²)

Volume flow rate corrected for moisture

From reference calculations (taken from BS ISO 9096):

$$q_{m} = q_{va} \frac{(100 - H_{a})}{(100 - H_{m})}$$

Corrected volume flowrate (m³/s) am =

Volume flow rate at actual conditions (m³/s) qva =

Ha = Moisture at actual conditions (%volume)

Hm = Reference moisture (%volume)

Volume flow rate corrected for temperature and pressure

From reference calculations (taken from BS ISO 9096):

$$q_m = q_{va} \frac{\left(T_m p_a\right)}{\left(T_a p_m\right)}$$

qm = Corrected volume flowrate (m³/s)

qva = Volume flow rate at actual conditions (m³/s)

Ta = Temperature at actual conditions (K)

Tm = Reference Temperatue (K)

Absolute gas pressure at actual conditions (kPa) pa =

pm = Reference pressure (kPa)

Volume flow rate corrected for oxygen

From reference calculations (taken from BS ISO 9096):

$$q_m = q_{va} \frac{(20.9 - O_{2,ref})}{(20.9 - O_{2,m})}$$

qm = Corrected volume flowrate (m³/s)

qva = Volume flow rate at actual conditions (m³/s)

O2,m = Actual oxygen concentration (%)

O2, ref = Reference oxygen concentration (%)

Page 18 of 21

Concentration Calculations

Concentration:

From reference calculations (taken from BS EN 13284-1):

$$c = \frac{m}{V}$$

c = Concentration

m = Mass of substane

V = Volume sampled

Mass Emission

Mass emission= $c \times q_m$

- *c* = Concentration
- *q* = Volume flow rate

Concentration corrected for oxygen:

From reference calculations (taken from BS ISO 9096):

$$c_m = c_a \times \frac{20.9 - O_{2,ref}}{20.9 - O_{2,a}}$$

cm =Concentration at reference conditionsca =Actual concentrationO2, ref =Reference oxygen (%)O2, a=Actual Oxygen (%)

Concentration corrected for moisture:

From reference calculations (taken from BS ISO 9096):

Convert wet gas to dry gas

$$c_{dry} = c_{wet} \times \frac{100}{100 - H_a}$$

Convert dry gas to wet gas

$$c_{wet} = c_{dry} \times \frac{100 - H_a}{100}$$

cwet = Concentration wet gas

cdry = Concentration dry gas

Ha = Water vapour content (%vol)

Conversion of parts per million (ppm) to mg/m³ From reference calculations (taken from EA TGN M2):

 $Concentration(mg/m^3) = \frac{Concentration(ppm) \times molecular \ weight(g)}{molar \ volume(l) \ at \ a \ given \ temperature}$

molar volume at 273K = 22.4 litres

When Converting TOC

 $Concentration(mg/m^3) = \frac{Concentration(ppm) \times molecular \ weight of \ carbonin \ span \ gas(g)}{molar \ volume(l) \ at \ a \ given \ temperature}$

Page 19 of 21

Calculation of Uncertainty Estimates - Manual Monitoring Techniques

$$C_{m} = \frac{Q_{m}}{V_{std}}$$
$$V_{std} = V_{T.p} \times \frac{T_{std}}{T} \times \frac{p}{P_{std}}$$

Where:

C _m	=	the measured concentration	in	mg/m ³
Q _m	=	mass concentration collected in absorber solution and filter	in	mg
V _s	=	the volume of the sample solution	in	I
V _{std}	=	volume sampled at standard conditions	in	m ³
T _m	=	mean temperature of gas meter	in	K
T _{std}	=	standard temperature	=	273K
p=prel+Patm	=	absolute pressure = gas meter pressure + atmospheric pressure	in	kPa
P _{std}	=	standard pressure	=	101.325 kPa
V _{T.p}	=	volume sampled as indicated by the gas meter	in	m³

Expression for calculation of the combined uncertainty of the measured concentration

$$\frac{u^2(C_m)}{(C_m)^2} = \frac{u^2(Q_m)}{(Q_m)^2} + \frac{u^2(v_s)}{(v_s)^2} + \frac{u^2(V_{std})}{(V_{std})^2}$$

Expression for calculation of the combined uncertainty of the gas volume

$$V_{std} = V_{T.p} \times \frac{T_{std}}{T_m} \times \frac{p}{P_{std}}$$

Assuming that uncertainties associated with the standard quantities T_{std} and P_{std} are negliable Expression for calculation of the combined uncertainty of the measured concentration

$$\frac{u^2(C_m)}{(C_m)^2} = \frac{u^2(Q_m)}{(Q_m)^2} + \frac{u^2(v_s)}{(v_s)^2} + \frac{u^2(V_{T,p})}{(V_{T,p})^2} + \frac{u^2(T)}{(T)^2} + \frac{u^2(p_{rel})}{(p)^2} + \frac{u^2(p_{atm})}{(p)^2}$$

$$u(C_m) = \sqrt{\left(\frac{u^2(Q_m)}{(Q_m)^2} + \frac{u^2(v_s)}{(v_s)^2} + \frac{u^2(V_{T,p})}{(V_{T,p})^2} + \frac{u^2(T)}{(T)^2} + \frac{u^2(p_{rel})}{(p)^2} + \frac{u^2(p_{atm})}{(p)^2}\right)} \times (C_m)^2$$

Overall expanded uncertainty (k = 2)

$$U(C_m) = u(C_m) \times k$$

Uncertainty of the measured concentration at oxygen reference concentration

$$u(C_{m,O_{2,ref}}) = \sqrt{\left(\frac{u^2(Q_m)}{(Q_m)^2} + \frac{u^2(v_s)}{(v_s)^2} + \frac{u^2(V_{T,p})}{(V_{T,p})^2} + \frac{u^2(T)}{(T)^2} + \frac{u^2(p_{rel})}{(p)^2} + \frac{u^2(p_{atm})}{(p)^2} + \frac{u^2(O_{2,meas,dry})}{(21 - O_{2,meas,dry})^2}\right)} \times (C_{m,O_2,ref})^2$$

Where:

u(Cm,O _{2,ref)}	=	uncertainty associated with the mass concentration at O_2 reference concentration	in	mg/m ³
Cm,O _{2,ref}	=	mass concentration at O ₂ reference concentration	in	mg/m ³
O _{2,meas}	=	O ₂ measured concentration	in	% volume
u((O _{2,meas)dry)}	=	uncertainty associated to the measured O ₂ concentration	in	% (relative to $O_{2 \text{ meas}}$)

Page 20 of 21

APPENDIX 4

Uncertainty Estimate For The Measurement Of Hydrogen Fluoride

Symbol	Mass concentration of HE	Unite	1				
Cm		Units	-	Symbol	Daily amir	ssion limit value	Unito
Cm at O2 raf	11.80	mg/m [*]	-	Symbol	Daily entit		Units
Chi al Oz lei	N/A Deference Oursee	mg/m*		DELV		5.0	mg/m*
0 ref	Reference Oxygen	0/		orrection)			
02,101	0.0	/0					
Symbol	Source of Uncertainty	Value	Units	Probability Distribution	Divisor	ci	Ui
u(Q _m)	Analytical Uncertainty	7.0	%	Normal (k=2)	1	1	7
Qm	Concentration in absorption solution	10.44	ma/l	Normal	-	1	0 7308
//(Q_m)/Q_m	Belatve			Normal		_	0.0700
	Tolateo			Normal		$\mu(0)^2/0^2$	0.0049
							0.0010
	Volume of sampled gas						
Symbol	Source of Uncertainty	Value	Units	Probability Distribution	Divisor	ci	Ui
$\mu(calV_{T_n})$	Calibration	0.0007	m ³	Normal	2	1	0.0004
u(repV _T)	Beneatability	0.0001	m ³	Normal	1	1	0.0001
$\frac{u(op V_{1,p})}{u(drift V_{-})}$	Drift	0.0001	m ³	Bectangular	1/2	1	0.0001
u(roc)(1)	Bosolution	0.0004		Pootongular	~ 5	1	0.0002
$u(1esv_{T,p})$	Combined Uncertainty	0.0002	m	Normal	$\sqrt{3}$	'	0.0001
$u(\mathbf{v}_{T,p})$	Beletvo	- 0.146	- 3	Normai		-	0.0005
<i>u</i> (v _{T.p})/v _{T.p}	Relaive	0.146	m⁼	-	-	-	0.0032
	Townshing of the DOM					u(vm)/vm	0.000010
Symbol	Course of Upportainty	Value	Linite	Brobability Distribution	Divisor	oi	11
	Colibration	value 1.00	Units		DIVISOL	1	0.5000
	Calibration	1.00	ĸ	Normai	2		0.5000
U(carre _m)	Calibration	1.0	ĸ	2.00	2	1	0.5000
$U(\text{res I}_m)$	Resolution	0.1	K	Rectangular	$\sqrt{3}$	1	0.0577
	Drift	1.0	K	Rectangular	$\sqrt{3}$	1	0.5774
<u>u(I_m)</u>	Combined Uncertainty	-	-	Normal	-	-	0.9147
u(T _m)/Tm	Relatve	281.0	K	Normal	-	-	0.0033
						$u(\text{Tm})^2/\text{Tm}^2$	0.000011
	Atmospheric Pressure						
Symbol	Source of Uncertainty	Value	Units	Probability Distribution	Divisor	ci	Ui
u(P _{atm})	Metrological Office	300	Pa	Normal	$\sqrt{3}$	1	173
u(P _{atm})	Combined Uncertainty	-	-	Normal	-	-	173
$u(P_{atm})/P$	Relatve	100500	-	Normal	-	-	0.00
						$u(P_{atm})^2/P^2$	0.00
	Relative DGM Pressure						
Symbol	Source of Uncertainty	Value	Units	Probability Distribution	Divisor	ci	Ui
u(P _{rel})	DGM Pressure	40	Pa	Normal	1	1	40
u(P _{rel})	Combined Uncertainty	-	-	Normal	-	-	40
u(P _{rel})/P	Relative	100598	-	Normal	-	-	0.0004
				•		$u(Prel)^2/P^2$	0.000002
	Volume (mass) of Absorption Solution						
Symbol	Source of Uncertainty	Value	Units	Probability Distribution	Divisor	Ci	Ui
u(repvs)	Repeatability	0.13	g (ml)	Normal	1	1	0.13
u(calvs)	Calibration (Tare)	0.10	g (ml)	Rectangular	1	1	0.10
u (drvs)	Drift	0.10	g (ml)	Rectangular	1	1	0.10
u (resvs)	Resolution	0.05	g (ml)	Rectangular	$\sqrt{3}$	1	0.03
$\mu(vs)$	Combined Uncertainty	-	-		• -		0 19
(vs)/vs	Belative	165	-	Normal	-	<u> </u>	0.0012
a (10)/10			1			$(1/(y_{S})^{2}/y_{S}^{2})$	0.0000014
	Oxygen reference concentration					u(vs//vs	0.0000014
mbol	Source of Uncertainty	Value	Inite	Probability Distribution	Divisor	ci	1 li
nooi O _o meas)dry)rol	Measurement of ovvicen	N/A	0/.	Normal	1	1	N/A
		IN/A	/0	NUIIIai	I		
	Measured Owrgan	- N//A	-	-	-	-	IN/A
	ivieasured Oxygen	IN/A	%	1		u(Orel) ⁻ /O ⁻	N/A
asurement unce	ertainty	1	1			0.00	
Sm)	Combined Standard Uncertainty				±	0.83	mg/m ³
		050/ 1 0					
banded uncertai	nty expressed with a level of confidence of	95%, k=2				1 ¹	
a \							1 3
Cm)	Expanded Combined Uncertainty	<i>k</i> = 2			±	1.66	mg/m°
Cm) Cm,rel)	Expanded Combined Uncertainty Expanded Combined Uncertainty	k = 2 $k = 2$			±	1.66 14.0	mg/m° %

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor (k = 2), providing a level of confidence of approximately 95%. The uncertainty evaluation has been carried out in accordance with UKAS requirements.